Extending Lipschitz Maps into C ( K ) - Spaces

نویسندگان

  • N. J. Kalton
  • N. J. KALTON
چکیده

We show that if K is a compact metric space then C(K) is a 2-absolute Lipschitz retract. We then study the best Lipschitz extension constants for maps into C(K) from a given metric space M , extending recent results of Lancien and Randrianantoanina. They showed that a finitedimensional normed space which is polyhedral has the isometric extension property for C(K)-spaces; here we show that the same result holds for spaces with Gateaux smooth norm or of dimension two; a threedimensional counterexample is also given. We also show that X is polyhedral if and only if every subset E of X has the universal isometric extension property for C(K)-spaces. We also answer a question of Naor on the extension of Hölder continuous maps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extension of linear operators and Lipschitz maps into C(K)-spaces

We study the extension of linear operators with range in a C(K)space, comparing and contrasting our results with the corresponding results for the nonlinear problem of extending Lipschitz maps with values in a C(K)space. We give necessary and sufficient conditions on a separable Banach space X which ensure that every operator T : E → C(K) defined on a subspace may be extended to an operator e T...

متن کامل

Bounded Composition Operators on Holomorphic Lipschitz and Bloch Spaces of the Polydisk

Let 0 ≤ α < 1. Denote the open unit polydisk in C by ∆. We obtain a purely function-theoretic condition characterizing the holomorphic self-maps of ∆ that induce bounded composition operators on (1−α)-Bloch spaces, which we define on ∆. As a consequence, we extend Madigan’s characterization of bounded composition operators on analytic α-Lipschitz spaces over ∆ for 0 < α < 1 to an analogous char...

متن کامل

Lipschitz quotients from metric trees and from Banach spaces containing l1

A Lipschitz map f between the metric spaces X and Y is called a Lipschitz quotient map if there is a C > 0 (the smallest such C, the co-Lipschitz constant, is denoted coLip(f), while Lip(f) denotes the Lipschitz constant of f) so that for every x ∈ X and r > 0, fBX(x, r) ⊃ BY (f(x), r/C). Thus Lipschitz quotient maps are surjective maps which by definition have the property ensured by the open ...

متن کامل

Continuous $k$-Fusion Frames in Hilbert Spaces

The study of the c$k$-fusions frames shows that the emphasis on the measure spaces introduces a new idea, although some similar properties with the discrete case are raised. Moreover, due to the nature of measure spaces, we have to use new techniques for new results. Especially, the topic of the dual of frames  which is important for frame applications, have been specified  completely for the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007